نوع مقاله : مقاله پژوهشی

نویسنده

استادیار دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد، ایران

چکیده

یکی از چالش‌های اصلی صنعت گردشگری، افزایش رضایت گردشگران است. در سال‌های اخیر، استفاده از هوش مصنوعی جهت رفع این چالش رشد چشمگیری داشته است. این پژوهش با هدف مرور جامع مطالعات مرتبط، از روش کتاب‌سنجی برای تحلیل ساختار علمی فعلی، شناسایی روندهای تحول‌آفرین، الگوهای تحقیقاتی نوظهور و تعیین دستور کارهای آینده استفاده کرده است. پس از تعیین راهبرد جستجوی مناسب و اعمال شاخص‌های غربالگری، ۴۹۹ مقاله از پایگاه داده اسکوپوس استخراج و با استفاده از بسته بیبلیومتریکس در نرم‌افزار R تحلیل شدند. یافته‌ها نشان می‌دهند تحلیل احساسات و بررسی نظرات آنلاین گردشگران، به‌ویژه با بهره‌گیری از ابزارهای پردازش زبان طبیعی، نقش مهمی در درک نیازها و انتظارات مشتریان و بهبود رضایت آن‌ها دارد. استفاده از الگوریتم‌های یادگیری ماشینی برای شناسایی الگوهای رفتاری و پیش‌بینی نیازهای آینده می‌تواند به ارتقای تجربیات گردشگران در مقاصد کمک کند. همچنین تبلیغات شفاهی الکترونیک، به‌عنوان مفهوم نوظهور، تأثیر مستقیمی بر سطح رضایت گردشگران دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Analyzing Tourist Satisfaction Through Artificial Intelligence: A Bibliometric Study

نویسنده [English]

  • Faezeh Asadian Ardakani

Assistance Professor of Department of Management Sciences, Yazd University, Yazd, Iran

چکیده [English]

Increasing tourist satisfaction is a key challenge in the tourism industry. In recent years, the application of artificial intelligence to address this challenge has attracted significant attention, leading to a surge in related research. This study analyzes existing literature using a bibliometric approach to map the scientific landscape, identify emerging trends, and suggest future research directions. After applying appropriate search strategies and screening criteria, 499 articles were retrieved from Scopus and analyzed using the Bibliometrix package in R. The findings highlight that sentiment analysis and review of tourists' online feedback, especially through natural language processing tools, are crucial for understanding customer needs and enhancing satisfaction. Machine learning algorithms identifying behavioral patterns and predicting future demands significantly improve tourist experiences. Additionally, electronic word-of-mouth, as an emerging concept, directly impacts tourist satisfaction.

کلیدواژه‌ها [English]

  • Tourism and Hospitality Industry
  • Tourist Satisfaction
  • Artificial Intelligence
  • Bibliometric Analysis
  1. شکاری، فاطمه (1401). گردشگری و هویت ملی- قومی: تحلیل کتاب‌سنجی. مطالعات مدیریت گردشگری، 17(60)، 79-115. DOI: 10.22054/tms.2023.71904.2797
  2. طبرسا، غلامعلی، سلیمی، ندا، مهاجرنیا، محمدرضا، اثنی عشری محمدحسین، بادین دهش، مهران (1403). سبک‌های رهبری: بررسی گذشته، حال و تبیین آینده با رویکرد علم‌سنجی در نرم‌افزار R. مطالعات مدیریت بهبود و تحول، 33(111)، 1-40.‎ DOI: 10.22054/jmsd.2023.74430.4341
  3. عزیزی، فاطمه (1403). تحولات موضوعی تحقیق‌های حوزه گردشگری اسلامی و حلال: تحلیل کتاب‌سنجی. مطالعات اجتماعی گردشگری، 12(27)، 79-104. DOI: 61186/journalitor.43511.12.27.7
  4. معارفی، محمود، اسدالله، هوشنگ، حسن‌پور قروقچی، اسماعیل (1399). ارائه الگوی بازاریابی محتوا مبتنی بر الگوریتم ژنتیک در صنعت گردشگری استان فارس. مطالعات مدیریت گردشگری، 15(52)، 208-175. org/10.22054/tms.2020.44116.2171
  5. یزدی اسماعیلی، نیلوفر، نادعلی‌پور، زهرا (1402). نقش مدیریت ارتباط الکترونیک با مشتری در تسهیل انتخاب مقصد گردشگری (مورد مطالعه: دفاتر خدمات مسافرتی فعال در تهران). مطالعات مدیریت گردشگری، 18(62)، 85-122.‎ DOI: 10.22054/tms.2023.68561.2840
  6. Acharya, P., & Mahapatra, S. S. (2024). Exploring the impact of artificial intelligence integration on guest experience in the hotel industry. Geo Journal of Tourism and Geosites, 54, 802-810. https://doi.org/10.30892/gtg.542spl04-1255
  7. Adi, A. (2022). Does the perceived quality of applications affect customer’s trust and satisfaction in online food delivery services. Jurnal Ekonomi dan Bisnis, 5(1), 122-13. https://doi.org/10.37600/ekbi.v5i1.486
  8. Al Fararni, K., Nafis, F., Aghoutane, B., Yahyaouy, A., Riffi, J., & Sabri, A. (2021). Hybrid recommender system for tourism based on big data and AI: A conceptual framework. Big Data Mining and Analytics, 4(1), 47-55. https://doi:26599/BDMA.2020.9020015
  9. Al-Hyari, H. S. A., Al-Smadi, H. M., & Weshah, S. R. (2023). The impact of artificial intelligence (AI) on guest satisfaction in hotel management: An empirical study of luxury hotels. Geo Journal of Tourism and Geosites, 48, 810-819. https://doi.org/10.30892/gtg.482spl15-1081
  10. Ameur, A., Hamdi, S., & Ben Yahia, S. (2023). Sentiment analysis for hotel reviews: A systematic literature review. ACM Computing Surveys, 56(2), 1-38. https://doi.org/10.1145/3605152
  11. Aria, M., Misuraca, M., & Spano, M. (2020). Mapping the evolution of social research and data science on 30 years of social indicators research. Social Indicators Research, 149, 803-831. https://doi.org/10.1007/s11205-020-02281-3.
  12. Binesh, F., & Baloglu, S. (2023). Are we ready for hotel robots after the pandemic? A profile analysis. Computers in Human Behavior, 147, 107854. https://doi.org/10.1016/j.chb.2023.107854
  13. Borghi, M., & Mariani, M. M. (2024). Asymmetrical influences of service robots perceived performance on overall customer satisfaction: An empirical investigation leveraging online reviews. Journal of Travel Research, 63(5), 1086-1111. https://doi.org/10.1177/00472875231190610
  14. Borrajo-Millán, F., Alonso-Almeida, M.-d.-M., Escat-Cortes, M., & Yi, L. (2021). Sentiment analysis to measure quality and build sustainability in tourism destinations. Sustainability, 13(11), 6015. https://doi.org/10.3390/su13116015
  15. Chavan, P., Havale, D. S., & Khang, A. (2024). Artificial Intelligence and Tourism: A Bibliometric Analysis of Trends and Gaps. Revolutionizing the AI-Digital Landscape, 332-344.
  16. Contu, G., Dessí, C., Massidda, C., & Ortu, M. (2024). Online reviews explain differences in coastal and inland tourists’ satisfaction. Scientific Reports, 14(1), 23607. https://doi.org/10.1038/s41598-024-74918-z
  17. Del Vasto, P. M. H., & Castro, M. L. A. (2024). Artificial intelligence (ai) in sustainable tourism: Bibliometric analysis. Cuadernos de turismo, 53, 157-185. https://doi.org/10.6018/turismo.616431
  18. Derviş, H. (2019). Bibliometric analysis using bibliometrix an R package. Journal of Scientometric Research, 8(3), 156-160. DOI: 5530/jscires.8.3.32
  19. Diwan, S. A. (2025). Optimizing guest experience in smart hospitality: Integrated fuzzy-AHP and machine learning for centralized hotel operations with IoT. Alexandria Engineering Journal, 116, 535-547. https://doi.org/10.1016/j.aej.2024.11.051
  20. Dogru, T., Line, N., Mody, M., Hanks, L., Abbott, J. A., Acikgoz, F., ... & Zhang, T. (2025). Generative artificial intelligence in the hospitality and tourism industry: Developing a framework for future research. Journal of Hospitality & Tourism Research, 49(2), 235-253. https://doi.org/10.1177/10963480231188663
  21. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
  22. Dwivedi, Y. K., Balakrishnan, J., Baabdullah, A. M., & Das, R. (2023). Do chatbots establish “humanness” in the customer purchase journey? An investigation through explanatory sequential design. Psychology & Marketing, 40(11), 2244-2271. https://doi.org/10.1002/mar.21888
  23. Dwivedi, Y. K., Pandey, N., Currie, W., & Micu, A. (2024). Leveraging ChatGPT and other generative artificial intelligence (AI)-based applications in the hospitality and tourism industry: practices, challenges and research agenda. International Journal of Contemporary Hospitality Management, 36(1), 1-12. https://doi.org/10.1108/IJCHM-05-2023-0686
  24. Dziurakh, Y., Kulyniak, I., Halanets, V., Dzyana, H., & Dzyanyy, R. (2024). Use of artificial intelligence in smart tourism: Bibliometric analysis. In E3S Web of Conferences 501, p. 01002). EDP Sciences. https://doi.org/10.1051/e3sconf/202450101002
  25. García-Madurga, M. Á., & Grilló-Méndez, A. J. (2023). Artificial Intelligence in the tourism industry: An overview of reviews. Administrative Sciences, 13(8), 172. https://doi.org/10.3390/admsci13080172
  26. Geng, Y., Jiang, X., Bai, W., Yan, Y., & Gao, J. (2024). Research progress of tourism marketing over 30 years: Bibliometrics based on CiteSpace. Ecological Indicators, 162, 112059. https://doi.org/10.1016/j.ecolind.2024.11205
  27. Ghesh, N., Alexander, M., & Davis, A. (2024). The artificial intelligence-enabled customer experience in tourism: A systematic literature review. Tourism Review, 79(5), 1017-1037. https://doi.org/10.1108/TR-04-2023-0255
  28. Guo, X., Pesonen, J., & Komppula, R. (2021). Comparing online travel review platforms as destination image information agents. Information Technology & Tourism, 23, 159-187. https://doi.org/10.1007/s40558-021-00201-w
  29. Jogarao, M. (2024). AI in the Hospitality Industry: Revolutionizing Guest Experience. In Technology and Luxury Hospitality (pp. 199-210). Routledge.
  30. Kemeç, A., & Altınay, A. T. (2023). Sustainable energy research trend: A bibliometric analysis using VOSviewer, RStudio bibliometrix, and CiteSpace software tools. Sustainability, 15(4), 3618. https://doi.org/10.3390/su15043618
  31. Kim, Y.-J., & Kim, H. S. (2022). The impact of hotel customer experience on customer satisfaction through online reviews. Sustainability, 14(2), 848. https://doi.org/10.3390/su14020848
  32. Kırtıl, İ. G., & Aşkun, V. (2021). Artificial intelligence in tourism: A review and bibliometrics research. Advances in Hospitality and Tourism Research (AHTR), 9(1), 205-233. https://doi.org/10.30519/ahtr.801690
  33. Knani, M., Echchakoui, S., & Ladhari, R. (2022). Artificial intelligence in tourism and hospitality: Bibliometric analysis and research agenda. International Journal of Hospitality Management, 107, 103317. https://doi.org/10.1016/j.ijhm.2022.103317
  34. Ku, E. C., & Chen, C. D. (2024). Artificial intelligence innovation of tourism businesses: From satisfied tourists to continued service usage intention. International Journal of Information Management, 76, 102757. https://doi.org/10.1016/j.ijinfomgt.2024.102757
  35. Kumar, D., Shandilya, A. K., & Choudhuri, S. (2023). Artificial intelligence-enabled bibliometric analysis in tourism and hospitality using biblioshiny and VOSviewer software. AI-Centric Modeling and Analytics (pp. 260-291). CRC Press.
  36. Lee, Y. L., Chien, T. W., & Wang, J. C. (2022). Using Sankey diagrams to explore the trend of article citations in the field of bladder cancer: Research achievements in China higher than those in the United States. Medicine, 101(34), e30217. DOI: 10.1097/MD.0000000000030217
  37. Li, C., Yu, Y., Filieri, R., & Cui, G. (2025). All words have consequences: Concrete versus abstract language in management response to hotel guest reviews. Tourism Management, 106, 105032. https://doi.org/10.1016/j.tourman.2024.105032
  38. Limna, P. (2023). Artificial Intelligence (AI) in the hospitality industry: A review article. International Journal of Computing Sciences Research, 7, 1306-1317. http://orcid.org/0000-0002-7448-5261
  39. Lin, H. Y., Chou, W., Chien, T. W., Yeh, Y. T., Kuo, S. C., & Hsu, S. Y. (2024). Analyzing shifts in age-related macular degeneration research trends since 2014: A bibliometric study with triple-map Sankey diagrams (TMSD). Medicine, 103(3), e36547. https://doi: 10.1097/MD.0000000000036547
  40. Lin, Z., & Rasoolimanesh, S. M. (2022). Sharing tourism experiences in social media: A systematic review. Anatolia, 1-15. https://doi:1080/13032917.2022.2120029
  41. Louati, A., Louati, H., Alharbi, M., Kariri, E., Khawaji, T., Almubaddil, Y., & Aldwsary, S. (2024). Machine learning and artificial intelligence for a sustainable tourism: A case study on Saudi Arabia. Information, 15(9), 516. https://doi.org/10.3390/info15090516
  42. Ma, S. (2024). Enhancing Tourists' Satisfaction: Leveraging artificial intelligence in the tourism sector. Pacific International Journal, 7(3), 89-98. https://doi:55014/pij.v7i3.624
  43. Mehraliyev, F., Chan, I. C. C., & Kirilenko, A. P. (2022). Sentiment analysis in hospitality and tourism: A thematic and methodological review. International Journal of Contemporary Hospitality Management, 34(1), 46-77. DOI:1108/IJCHM-02-2021-0132
  44. Mohamed, E. S. A. (2021). The impact of customer experience and relationship quality on corporate reputation in the hotel sector. International Journal of Customer Relationship Marketing and Management, 12(2), 53–79. DOI:4018/IJCRMM.2021040104
  45. Moreno Brito, Y. L., Ban, H. J., & Kim, H. S. (2024). Ecological hotels' customer satisfaction through text mining of online reviews: A case of Ecuador hotels. Journal of Hospitality and Tourism Insights, 7(3), 1532-1552. https://doi.org/10.1108/JHTI-09-2022-0467
  46. Mustak, M., Salminen, J., Plé, L., & Wirtz, J. (2021). Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda. Journal of Business Research, 124, 389-404. https://doi.org/10.1016/j.jbusres.2020.10.044
  47. Nannelli, M., Capone, F., & Lazzeretti, L. (2023). Artificial intelligence in hospitality and tourism. State of the art and future research avenues. European Planning Studies, 31(7), 1325-1344. https://doi.org/10.1080/09654313.2023.2180321
  48. Nawawi, I., Ilmawan, K. F., Maarif, M. R., & Syafrudin, M. (2024). Exploring Tourist Experience through Online Reviews Using Aspect-Based Sentiment Analysis with Zero-Shot Learning for Hospitality Service Enhancement. Information, 15(8), 499. https://doi.org/10.3390/info15080499
  49. Nguyen, H. T. T., Manh, H. N., & Kim, T. B. T. (2024). Classifying different levels of customer satisfaction with Vietnamese Hotel services by analyzing customer feedback. International Journal of Asian Business and Information Management, 15(1), 1-22. DOI:4018/IJABIM.335855
  50. Nowacki, M., Niezgoda, A., (2020). Identifying unique features of the image of selected cities based on reviews by TripAdvisor portal users. Scandinavian Journal of Hospitality and Tourism. 20(5), 503–519. https://doi:1080/15022250.2020.1833362
  51. Padma, P., & Ahn, J. (2020). Guest satisfaction & dissatisfaction in luxury hotels: An application of big data. International Journal of Hospitality Management, 84, 102318. https://doi.org/10.1016/j.ijhm.2019.102318
  52. Said, S. (2023). The role of artificial intelligence (AI) and data analytics in enhancing guest personalization in hospitality. Journal of Modern Hospitality, 2(1), 1-13. https://doi:47941/jmh.1556
  53. Samara, D., Magnisalis, I., & Peristeras, V. (2020). Artificial intelligence and big data in tourism: a systematic literature review. Journal of Hospitality and Tourism Technology, 11(2), 343-367. https://doi.org/10.1108/JHTT-12-2018-0118
  54. Saxena, S. K., Gupta, V., & Kumar, S. (2024). Enhancing Guest Loyalty in the hotel industry through artificial intelligence-drive personalization. In New Technologies in Virtual and Hybrid Events (pp. 335-350). IGI Global. Httpa://doi:4018/979-8-3693-2272-7.ch017
  55. Şengel, Ü., & Işkın, M. (2024). Intellectual structure on artificial intelligence studies in tourism and hospitality: a bibliometric analysis. Worldwide Hospitality and Tourism Themes, 16(2), 202-215. https://doi.org/10.1108/WHATT-03-2024-0070
  56. Shafiezad, O., & Mostofi, H. (2024). Sentiment analysis of berlin tourists’ food quality perception through artificial intelligence. Tourism and Hospitality, 5(4), 1396-1417. https://doi.org/10.3390/tourhosp5040078
  57. Shelke, P. M., Dedgaonkar, S., & Bhimanpallewar, R. N. (2024). Powering user interface design of tourism recommendation system with AI and ML. In artificial intelligence, machine learning and user interface design (pp. 108-135). Bentham Science Publishers. https://doi:2174/9789815179606124010008
  58. Shrestha, D., Wenan, T., Gaudel, B., Rajkarnikar, N., & Jeong, S. R. (2022). Multi-dimensional analysis and prediction model for tourist satisfaction. KSII Transactions on Internet and Information Systems (TIIS), 16(2), 480-502. DOI:3837/tiis.2022.02.007
  59. Solakis, K., Katsoni, V., Mahmoud, A. B., & Grigoriou, N. (2024). Factors affecting value co-creation through artificial intelligence in tourism: A general literature review. Journal of Tourism Futures, 10(1), 116-130. https://doi.org/10.1108/JTF-06-2021-0157
  60. Song, C. S., & Kim, Y. K. (2022). The role of the human-robot interaction in consumers’ acceptance of humanoid retail service robots. Journal of Business Research, 146, 489-503. https://doi.org/10.1016/j.jbusres.2022.03.087
  61. Song, Y., & He, Y. (2023). Toward an intelligent tourism recommendation system based on artificial intelligence and IoT using Apriori algorithm. Soft Computing, 27(24), 19159-19177. https://doi.org/10.1007/s00500-023-09330-2
  62. Tang, M., & Kim, H. S. (2022). An exploratory study of electronic word-of-mouth focused on casino hotels in Las Vegas and Macao. Information, 13(3), Article 135. https://doi.org/10.3390/info13030135
  63. Tao, S., & Kim, H. S. (2022). Online customer reviews: Insights from the coffee shops industry and the moderating effect of business types. Tourism Review, 77(5), 1349-1364. https://doi.org/10.1108/TR-12-2021-0539
  64. Thu, H. N. T., Minh, T. T., Binh, G. N., & Ngoc, V. H. (2020). Determining criteria for evaluating quality of Vietnamese hotel through guest online reviews. International Journal of Business Information Systems, 1(1), 1. https://doi:1504/IJBIS.2020.1003628
  65. Vermeulen, I. E., & Seegers, D. (2009). Tried and tested: The impact of online hotel reviews on consumer consideration. Tourism management, 30(1), 123-127. https://doi.org/10.1016/j.tourman.2008.04.008
  66. Vo, N. T., Hung, V. V., Tuckova, Z., Pham, N. T., & Nguyen, L. H. L. (2022). Guest online review: An extraordinary focus on hotel users’ satisfaction, engagement, and loyalty. Journal of Quality Assurance in Hospitality & Tourism, 23(4), 913–944. https://doi.org/10.1080/1528008X.2021.1920550
  67. Wang, J., Wu, J., Sun, S., & Wang, S. (2024). The relationship between attribute performance and customer satisfaction: An interpretable machine learning approach. Data Science and Management, 7(3), 164-180. https://doi.org/10.1016/j.dsm.2024.01.003
  68. Wang, Y. (2022). Research on the influence of service quality of hotel intelligent system on customer satisfaction based on artificial intelligence evaluation. Mathematical Problems in Engineering, (1), Article 3832935. https://doi:1155/2022/3832935
  69. Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780. https://doi.org/10.1007/s10462-022-10144-1
  70. Wei, S., & Kim, H. S. (2022). Online customer reviews and satisfaction with an upscale hotel: A case study of Atlantis, The Palm in Dubai. Information, 13(3), 150. https://doi.org/10.3390/info13030150
  71. Xu, X. A., Wen, N., & Liu, J. (2024). Empathic accuracy in artificial intelligence service recovery. Tourism Review, 79(5), 1058-1075. https://doi.org/10.1108/TR-06-2023-0394
  72. Yan, H. (2023). The analysis of tourist satisfaction integrating the artistic intelligence convolutional neural network and internet of things technology. IEEE Access. https://doi: 1109/ACCESS.2023.3317251
  73. Yüksel, F., & Ön, F. (2024). Sport event research in the hospitality and tourism industry: A bibliometric analysis. Worldwide Hospitality and Tourism Themes, 16(4), 423-439. https://doi.org/10.1108/WHATT-06-2024-0123
  74. Zhang, D., & Niu, B. (2024). Leveraging online reviews for hotel demand forecasting: A deep learning approach. Information Processing & Management, 61(1), 103527. https://doi.org/10.1016/j.ipm.2023.103527
  75. Zhang, X., & Kim, H.-S. (2021). Customer experience and satisfaction of Disneyland Hotel through big data analysis of online customer reviews. Sustainability, 13(22), 12699. https://doi.org/10.3390/su132212699