Document Type : Research Paper

Authors

1 Master of Industrial Engineering, , University of Tehran, Fouman Faculty of Engineering Campus, Fuman, Guilan, Iran

2 Assistant Professor, Industrial and Systems Engineering, University of Tehran, Fouman Faculty of Engineering Campus, Fuman, Guilan, Iran

Abstract

It is an important issue that what is the most effective service or efficient designing part as a distinctive factor between a tourism app and its competitors in the highly competitive environment in this field? In this survey, as the first step, the Tourism Mobile Apps (TMAs) functional criteria (success factors) are extracted by an appropriate literature review and the opinion of experts who have competitive intelligence knowledge. Then a case study is done on five famous tourism apps in the accommodation sector using the Fuzzy ANOVA. According to the achieved results, users believe that there isn’t any difference between considered applications in criteria such as “Reliability of M-technology”, “Perceived ease of use”, “Perceived Trust”, “Perceived Cost Transparency” and “security issues”. Consequently, the first group is identified as critical success criteria and has more influence on user satisfaction and, subsequently, the success of TMA.
 Introduction
The tourism industry is the most profitable part of the economy in advanced countries and has undeniable effects on economic, social, cultural, and ecological areas (Sadeghi et al., 2019). Today, information technology and using different mobile applications attract many tourists to this market. Numerous competitors, further making the choosing process for users difficult, create a set of qualified services for consumers.
This research is a case study on top five accommodation (as one of the most important sections of the tourism industry) applications. Therefore, it extracted the performance criteria initially and then investigated the similarity rate in fulfilment levels of those mobile apps. In other words, the final purpose of the current study is to identify the critical success factors through performance adaptation of success TMAs to each other between success criteria.
In this regard, the previous research related to TMA is investigated to achieve an initial success framework.
Materials and Methods
The best method for investigating differences between several groups of data is ANOVA. Likewise, Fuzzy ANOVA is a powerful and efficient variance analysis method for fuzzy data.
This study evaluates the fulfilment levels of 10 performance criteria in top 5 TMA in Iran. Initially, 20 performance criteria were extracted, then mitigated to 10 factors, using the Friedman test. A Likert scale questionnaire in five linguistic variables was provided and distributed between experts for this aim. The total average of criteria is achieved at 2.82, and it means all the criteria by an average less than 2.82 will be omitted from the initial list.
Five TMAs by the most active installation are identified at the next step. Respectively, these mobile apps are Alibaba, Snaptrip, AP, Booking.com, and Trip Advisor.
Before considering the analysis of achieved data from experts, it’s needed to calculate the reliability and validity of questionnaires. For this purpose, a Likert scale questionnaire is designed in the present study, and the validity and reliability of criteria are calculated using discriminant/convergent validity and Cronbach alpha. Furthermore, a secondary approach (composite reliability) is also used to evaluate the reliability. This process is implemented using SmartPLS software.
Finally, the comparison between TMAs is made by using the fuzzy ANOVA approach.
Discussion and Result
The distributed questionnaire was answered by 10 experts who were selected by using the purposive sampling method. All the respondents at least have one year experience of working with a TMA. The collected data by respondents requires validity and reliability evaluation. The achieved results prove the questionnaire reliability and validity of the criteria. The result is demonstrated in table 1.
Table (1). Questionnaire Reliability




Row


criteria


original sample


Sample average


Standard deviation


T-Statistics


P-Values


Cronbach alpha
 


Composite Reliability
 




1


PVMT


0.469


0.492


0.103


4.538


0.000


0.709


0.801




2


ROMT


0.537


0.702


0.095


7.325


0.000


0.888


0.919




3


PE


0.540


0.589


0.083


6.699


0.000


0.765


0.842




4


PEU


0.372


0.550


0.148


2.516


0.013


0.836


0.713




5


UIIT


0.449


0.553


0.149


3.632


0.000


0.799


0.854




6


PT


0.554


0.569


0.104


5.189


0.000


0.788


0.845




7


PSQ


0.695


0.617


0.084


7.048


0.000


0.810


0.874




8


PCT


0.797


0.488


0.176


2.554


0.011


0.854


0.791




9


ISQ


0.593


0.635


0.095


6.703


0.000


0.851


0.895




10


SEC


0.634


0.799


0.092


8.624


0.000


0.935


0.951




At the next step, the fuzzy ANOVA approach proves that in five criteria, the relationship p of is true and verifies the zero hypnosis, and for the others, the correct equation is  that proves the null one.
Conclusion
The final output of this study demonstrates that a TMA for success achievement must focus on “Perceived value of M-technology”,” Perceived ease of use”,” Perceived Trust”,” Perceived Cost Transparency” and “Security issues” because all these criteria were implemented equally in all of five TMA.

Keywords

دلشاد، علی، ابوهاشم‌آبادی، فرزانه، قاسمیان صاحبی، ایمن، (1396). اولویت بندی و تعیین روابط بین شاخص‌های سنجش پایداری توسعه گردشگری. مطالعات مدیریت گردشگری 73-94، 12(39).
رحیمی چم‌خانی، علیرضا و پناهی‌نژاد، ابوطالب، (1397). ارزیابی میزان آمادگی الکترونیکی، نگرش و دیدگاه گردشگران به‌عنوان پیش‌نیاز تحقق گردشگری الکترونیک. پژوهش‌های گردشگری و توسعه پایدار،13-26، 1(2).
رئیسی وانانی، ایمان و جلالی، سید محمد جعفر، (1397). ارزیابی تحلیلی حوزه‌های علمی در حال ظهور در صنعت گردشگری منطقه خاورمیانه با استفاده از الگوریتم‌های متن کاوی. مطالعات مدیریت گردشگری، 77-99، 13(43).
صادقی، علی‌رضا، دهقانی، محمد امین و دادگر، مسعود، (1398)، رتبه بندی عوامل مؤثر بر میزان رضایتمندی گردشگری شهری با استفاده از مدل کانو، مطالعه موردی: شهر شیراز. نشریه گردشگری شهری، 139-151، 6(3).
صفایی پور، مسعود، گشتیل، فروغ، رحیمی چم‌خانی، علیرضا، پناهی نژاد، ابوطالب، موسوی، سید چمران، (1394)، تأثیر استفاده از فناوری اطلاعات و ارتباطات بر شکل‌گیری گردشگری الکترونیکی در بین گردشگران ورودی به شهر شیراز. جغرافبا و توسعه فضای شهری، 55-73، 2(2).
عطافر، علی، خزایی پول، جواد و پور مصطفی خشکرودی، مهدی، (1391). عوامل مؤثر بر پذیرش فناوری اطلاعات در صنعت گردشگری. مطالعات مدیریت گردشگری، 133-156، 7(18).
Alalwan, A. A. (2020). Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. International Journal of Information Management, 50, 28–44.
Atafar, A., Khazai pul, J., Pur Mostafa, M. (2012). Affecting Factors on Adoption of Information Technology in Tourism Industry. Tourism management studies, 7(18), 133-156. [In Persian]
Chang, C.-C. (2015). Exploring mobile application customer loyalty: The moderating effect of use contexts. Telecommunications Policy, 39(8), 678–690.
Chen, C.-C., & Tsai, J.-L. (2019). Determinants of behavioral intention to use the Personalized Location-based Mobile Tourism Application: An empirical study by integrating TAM with ISSM. Future Generation Computer Systems, 96, 628–638.
Chen, K.-C., & Chiu, Y. J. (2018). Correlation between Innovation Strategy and Operational Performance in Tourism based on Competitive Advantage. Revista de Cercetare Si Interventie Sociala, 62, 129–139.
Christian, M. (2015). Mobile Application Development in the Tourism Industry and its Impact on On-Site Travel Behavior. Modul Vienna University.
Chung, N., Han, H., & Joun, Y. (2015). Tourists’ intention to visit a destination: The role of augmented reality (AR) application for a heritage site. Computers in Human Behavior, 50, 588–599.
Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems, 19(4), 9–30.
Delshad, A., Abohashem Abadi, F., Ghasemian, I. (2017). Prioritizing and Determining the Relationships of Tourism Development Sustainability Measuring Indexes. Tourism management studies, 12(39), 73-94. [In Persian]
Haugstvedt, A.-C., & Krogstie, J. (2012). Mobile augmented reality for cultural heritage: A technology acceptance study. 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 247–255.
Hsu, C.-L., & Lin, J. C.-C. (2015). What drives purchase intention for paid mobile apps?–An expectation confirmation model with perceived value. Electronic Commerce Research and Applications, 14(1), 46–57.
Huang, C.-Y., Wu, H.-H., & Lu, H.-H. (2016). A MCDM methods based TAM for deriving influences of privacy paradox on user’s trust on social networks. International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems,356–363.
Jia, Z., Li, D., & He, F. (2016). Analysis and reviews on tourism and travel mobile apps of China. International Conference on Electronics, Mechanics, Culture and Medicine, 62–66.
Kwon, J. M., Bae, J. S., & Blum, S. C. (2013). Mobile applications in the hospitality industry. Journal of Hospitality and Tourism Technology, 4(1), 81–92.
Lai, I. K. W. (2015). Traveler acceptance of an app-based mobile tour guide. Journal of Hospitality & Tourism Research, 39(3), 401–432.
Law, R., Leung, R., & Buhalis, D. (2009). Information technology applications in hospitality and tourism: a review of publications from 2005 to 2007. Journal of Travel & Tourism Marketing, 26(5–6), 599–623.
Lee, J., & Mills, J. E. (2007). Exploring tourist satisfaction with mobile technology. In Information and Communication Technologies in Tourism 2007 (pp. 141–152). Springer.
Liu, Y., Yang, Y., Liu, Y., & Tzeng, G.-H. (2019). Improving sustainable mobile health care promotion: a novel hybrid MCDM method. Sustainability, 11(3), 752.
Okcu, S., Koksalmis, G. H., Basak, E., & Calisir, F. (2019). Factors affecting intention to use big data tools: an extended technology acceptance model. In Industrial Engineering in the Big Data Era (pp. 401–416). Springer.
Perovic, Ð., Moric, I., Pekovic, S., Stanovcic, T., Roblek, V., & Bach, M. P. (2018). The antecedents of tourist repeat visit intention: systemic approach. Kybernetes, 47(9), 1857–1871.
Puri, M. L., Ralescu, D. A., & Zadeh, L. (1993). Fuzzy random variables. In Readings in fuzzy sets for intelligent systems (pp. 265–271). Elsevier.
Raeesi Vanani, I., Jalali, S.M.J. (2018). Analytical Evaluation of Emerging Scientific Fields in Middle East Tourism Industry Using the Text Mining Algorithms. Tourism management studies, 13(43),77-99. [In Persian]
Rahimi, A., Panahinezhad, A. (2018). Assessing the level of e-readiness, attitude and perspective of tourists as a prerequisite for the fulfillment of e-tourism. Tourism research and sustainable development journal, 1(2), 13-26. [In Persian]
Rasinger, J., Fuchs, M., & Höpken, W. (2007). Information search with mobile tourist guides: A survey of usage intention. Information Technology & Tourism, 9(3–4), 177–194.
Sadegi, A. (2019), Dehghani, M. A, Dadgar, M. (2019). Ranking of Factors Affecting Urban Tourism Satisfaction Using Kano Model, Case Study: Shiraz. Journal of Urban Tourism, 6(3), 139-151. [In Persian]
Safaeepour, M., Gasgtil, F., Rahimi, A., Panahi Nezhad, A., Mousavi, S.C. (2015). An Evaluation of the Current Status of the Use of Information and Communication Technology in Tourism Industry (E-Tourism): The Case of Shiraz. Geogeraphy and urban space development. 2(2), 55-73. [In Persian]
Sim, J.-J., Tan, G. W.-H., Wong, J. C. J., Ooi, K.-B., & Hew, T.-S. (2014). Understanding and predicting the motivators of mobile music acceptance–a multi-stage MRA-artificial neural network approach. Telematics and Informatics, 31(4), 569–584.
Smirnov, A., Kashevnik, A., Ponomarev, A., Shchekotov, M., & Kulakov, K. (2015). Application for e-tourism: intelligent mobile tourist guide. 2015 IIAI 4th International Congress on Advanced Applied Informatics, 40–45.
Statista. (2019). Number of available applications in the Google Play Store from December 2009 to December 2019.
Tan, G. W.-H., Lee, V. H., Lin, B., & Ooi, K.-B. (2017). Mobile applications in tourism: the future of the tourism industry? Industrial Management & Data Systems, 83(1), 33–60.
Tobing, R. D. H. (2015). Mobile tourism application for Samosir Regency on Android platform. 2015 International Symposium on Technology Management and Emerging Technologies (ISTMET), 249–253.
Tsai, C.-Y. (2010). An analysis of usage intentions for mobile travel guide systems. African Journal of Business Management, 4(14), 2962–2970.
Vajirakachorn, T., & Chongwatpol, J. (2017). Application of business intelligence in the tourism industry: A case study of a local food festival in Thailand. Tourism Management Perspectives, 23, 75–86. https://doi.org/10.1016/j.tmp.2017.05.003
Verma, S., Bhattacharyya, S. S., & Kumar, S. (2018). An extension of the technology acceptance model in the big data analytics system implementation environment. Information Processing & Management, 54(5), 791–806.
Wang, D., Park, S., & Fesenmaier, D. R. (2012). The role of smartphones in mediating the touristic experience. Journal of Travel Research, 51(4), 371–387.
Wang, D., Xiang, Z., & Fesenmaier, D. R. (2016). Smartphone use in everyday life and travel. Journal of Travel Research, 55(1), 52–63.
Wang, H.-Y., & Wang, S.-H. (2010). Predicting mobile hotel reservation adoption: Insight from a perceived value standpoint. International Journal of Hospitality Management, 29(4), 598–608.
Wong, E., Leung, R., & Law, R. (2018). Significance of the dimensions and attributes of hotel mobile website from the perceptions of users. International Journal of Hospitality & Tourism Administration, 1–23.
Wu, H.-C. (2007). Analysis of variance for fuzzy data. International Journal of Systems Science, 38(3), 235–246.