ارزیابی وفاداری گردشگر به مقصد با رویکرد داده کاوی گردشگران داخلی شهر اصفهان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه مدیریت، عضو هیأت علمی دانشگاه اصفهان

2 دانشجو دکتری دانشگاه شهید بهشتی

چکیده

امروزه با توجه به اهمیت مشتری در محیط پرتلاطم و رقابتی، بهویژه در صنعت گردشگری
و همچنین هزینۀ جذب مشتری جدید که بهمراتب بیش از هزینه حفظ مشتری موجود است ،
شناسایی مشتری وفادار و حفظ آن اولویت بالایی دارد
در این پژوهش تلاش شده،که از طریق رویکرد داده کاوی به ارزیابی وفاداری گردشگر پرداخته شود.این پژوهش بر روی 880 گردشگر داخلی شهر اصفهان که در بهار و تابستان 93 و 94 بیش از یک شب در هتل های 4 و 5 ستاره اقامت داشته اند،انجام شد.برای تجزیه و تحلیل داده‌ها از نرم افزارSPSSClementine12 و برای خوشه بندی گردشگران از الگوریتم تلفیقی PSO-KM و LRFMاستفاده شده است.نتایج حاکی از آن است که گردشگران را می توان به دو دسته طبقه بندی کرد:دسته اول در شاخصهای طول ارتباط با گردشگر و تازگی سفر دارای میانگینی بالا و در شاخصهای هزینه و تکرار سفر دارای میانگینی کمتر از سطح متوسط هستند،لذا جزء مشتریان وفادار و نامطمئن هستند.دسته دوم در شاخص تازگی سفر دارای میانگینی بالا و در شاخصهای طول ارتباط با گردشگر،هزینه و تکرار سفر دارای میانگینی کمتر از سطح متوسط هستند،لذا جزء مشتریان جدید و نامطمئن هستند.

کلیدواژه‌ها


عنوان مقاله [English]

A Data Mining Approach for Evaluating the Tourist Destination Loyalty

نویسندگان [English]

  • Azarnoush Ansari 1
  • ali asadi 2
1 Assistant Professor, Department of Management, University of Isfahan, Isfahan, Iran
2 Faculty of Management and Accounting
چکیده [English]

The aim of this study is to evaluate the tourist loyalty through data mining
approach. The study has exemined 880 domestic tourists who have stayed in
more than one night in four and five star hotels of Isfahan in spring and summer
2014 and 2015. SPSS and Clementine12 was used for data analysis.Also,
Mixture Algorithm PSO-KM was applied for tourism clustering.The results
showed that tourists can be classified in two categories. The first category have
a high average in length of communication with tourism and travel recency and
the cost and frequency of travel are less than average. Therefore, the customers
are loyal and uncertain. The second category has a high average in travel
recency and the length of communication with tourism, cost and frequency of
travel is less than average. Therefore the customers are new and uncertain.

کلیدواژه‌ها [English]

  • Evaluation of loyalty
  • Tourist
  • Data mining
  • LRFM
کریمی علویجه، محمدرضا، احمدی، محمدمهدی و نظری، مهسا، (1395)، بررسی اثرات ارزش‌های سنتی و ارزش‌های اسلامی بر رضایت و وفاداری گردشگران خارجی شهر قم، فصلنامه مطالعات مدیریت گردشگری. سال دهم، شماره32.

مروتی شریف‌آبادی، علی، عزیزی، فاطمه، جمشیدی، زینت، (1395)، تحلیل عوامل مؤثر بر رضایت گردشگران داخلی استان یزد با استفاده از مدل دیمتل فازی. فصلنامه مطالعات مدیریت گردشگری.سال یازدهم، شماره 33 .

سعیدی، احمد(1384)، داده‌کاوی، مفهوم و کاربرد آن در آموزش عالی، هفته‌نامه آموزش عالی،شماره 18.

غضنفری، مهدی، علیزاده، سمیه، تیمورپور، بابک(1393)، داده‌کاوی و کشف دانش، تهران: انتشارات دانشگاه علم و صنعت ایران.

غفاری، محمد، رضایی دولت‌آبادی، حسین، دهقانی اناری، فرشید،(1393)، تحلیل عوامل مؤثر بر وفاداری گردشگران به مقاصد گردشگری، مدیریت فرهنگ ‌سازمانی. دوره 12، شماره 3.

مصلحی، سیده نیره، کفاش پور، آذر، ناجی عظیمی، زهرا(1391)، استفاده از مدل LRFM  برای بخش‌بندی مشتریان بر اساس ارزش چرخه عمر آن‌ها در جهت بهبود مدیریت ارتباط با مشتری، (پایان‌نامه کارشناس ‌ارشد) دانشگاه فردوسی مشهد، ایران.

Al-Shayea, Q. K., Member, I., and Al-Shayea, T. K.(2014) Customer Behavior on RFMT ModelUsingNeuralNetworks, Proceedings of the World Congress on Engineering, Vol. 1.

Chang, H. H., & Tsay, S. F.(2004) Integrating  of  SOM and K-mean in data miningclustering: An empirical study of CRM and profitability evaluation. Journal of Information Management, Vol. 11, 161-203.

Chen, Y., and Li, X.(2009) The Effect of Customer Segmentation on an Inventory System in the Presence of Supply Distributions (pp. 2343-2352). Winter Simulation Conference (WSC), December 13.

Eberhart, R. C., & Kennedy, J.,(1995) A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science, Vol. 1. 

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P.,(1996) From Data Mining to Knowledge Discovery inDatabases, Al magazine, Vol. 17.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37.

Golmakani, H., Fazel, M.,(2011) Constrained Portfolio Selection using Particle Swarm Optimization. Expert Systems with Applications, 38(7),8327-8335.

Griffin, J., and Lowenstein, M. W.,(2002) Customer winback: How to recapture lost customers and keep them loyal, San Francisco: Jossey-Bass.

Hosseini, S. M. S., Maleki, A., and Gholarmian, M. R.(2010). Cluster analysis using Data mining approach to Develop CRM methodology to asses the customer loyalty, Expert Systems with Applications, Vol. 37(7), 5259-5264.

Hughes, A. M.(1996) Boosting reponse with RFM. Marking Tools, 5(1), 4-10.

Jiang, T., & Tuzhilin, A.(2009) Improving personalization solutions through optimal segmentation of customer bases. IEEE Transactions on Knowledge, 21(3), 305-320.

Wahlqvist, S., & Larsson, T. (2006). Brand New City: A Place Marketing Study on Jönköping.

Lemon, K. and Mark, T.(2006) customer lifetime value as the basis of customer segmentation. journal of relationship marketing, 5(2-3), 55-69.

Lewis, P., and Thornhill, A.(2000) Research methods for business students, Prentice Hall, SAS Institute, Best practice in churn prediction, A SAS Institute White Paper.

Li, D. C., Dai, W. L., & Tseng, W. T. (2011). A two-stage clustering method to analyze customer characteristics to build discriminative customer management: A case of textile manufacturing business. Expert Systems with Applications, 38(6), 7186-7191.

Li, Y., Wu, Y., & Lin, F. (2009, September). Research on Customer Segmentation Based on a Two-Stage SOM Clustering Algorithm. In Management and Service Science, 2009. MASS'09. International Conference on (pp. 1-4). IEEE.

Madani, S. (2009). Mining changes in customer purchasing behavior (Doctoral dissertation, Sweden: LuleaUniversity of Technology).

 Murakani, K., and Natori, SH.(2013) New Customer Management Technique: CRM by "RFM + I" Analysis, Nomura Research Institute.

Pappu, R., & Quester, P. (2006). Does customer satisfaction lead to improved brand equity? An empirical examination of two categories of retail brands. Journal of Product & Brand Management, 15(1), 4-14.

Şen, B., Uçar, E., & Delen, D. (2012). Predicting and analyzing secondary education placement-test scores: A data mining approach. Expert Systems with Applications, 39(10), 9468-9476.

Shaw, M. J., Subramaniam, C., Tan, G. W., & Welge, M. E. (2001). Knowledge management and data mining for marketing. Decision support systems, 31(1), 127-137.

Shearer, C. (2000). The CRISP-DM model: the new blueprint for data mining. Journal of data warehousing, 5(4), 13-22.

Shoemaker, S., & Lewis, R. C. (1999). Customer loyalty: the future of hospitality marketing. International Journal of Hospitality Management, 18(4), 345-370.

Sohrabi, B., & Khanlari, A. (2007). Customer lifetime value (CLV) measurement based on RFM model. Iranian Accounting & Auditing Review, 14(47), 7-20.

Sun, X., Chi, C. G. Q., & Xu, H. (2013). Developing destination loyalty: The case of Hainan Island. Annals of Tourism Research, 43, 547-577.

Tsai, C. Y., & Chiu, C. C. (2004). A purchase-based market segmentation methodology. Expert Systems with Applications, 27(2), 265-276.

Yeh, I. C., Yang, K. J., & Ting, T. M. (2009). Knowledge discovery on RFM model using Bernoulli sequence. Expert Systems with Applications, 36(3), 5866-5871.

Zalaghi, Z., & Varzi, Y. (2014). Measuring customer loyalty using an extended RFM and clustering technique. Management Science Letters, 4(5), 905-912.

pt; line-height:90%;font-family:"B Zar";mso-ascii-font-family:"Times New Roman"; mso-hansi-font-family:"Times New Roman"'> RaeesiVanani, I., Tahmasebipur, K., and Fazli, S. (2012). An exploratory analysis of hotel selection factors: A comprehensive survey of Tehran hotels, International Journal of Hospitality Management, 31(1), 96-106.

 Weinland, J. T., Gregory, A. M., & Petrick, J. A. (2016). Cultivating the aptitudes of vacation ownership management: A competency domain cluster analysis, International Journal of Hospitality Management, 55, 88-95.

:"B Zar";mso-ascii-font-family:"Times New Roman"; mso-fareast-font-family:Calibri;mso-hansi-font-family:"Times New Roman"; mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:FA'>